MahasiswaAlumni Universitas Negeri Malang Jawaban terverifikasi Pembahasan Asumsikan m + n dan m + p genap, maka ada bilangan bulat k dan l sedemikian sehingga m + n = 2k dan m + p = 2l. Dengan menjumlahkan diperoleh (m + n) + (m + p) = 2k + 2l n + p + 2m = 2 (k + l) n + p = 2 (k + l) - 2m n + p = 2 (k + l - m)
Euclid matematikawan Yunani (lahir 350 SM), buku Element menuliskan langkah-langkah untuk menemukan pembagi bersama terbesar (common greatest divisor atau gcd), dari dua buah bilangan bulat, m dan n. pembagi bersama terbesar dari dua buah bilangan bulat tak negatif adalah bilangan bulat positif terbesar yang habis membagi kedua bilangan tersebut.
. PembahasanJawaban yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai 0 p ′ = 0 Perhatikan perhitungan berikut ini! 3 m − n n ​ = = ​ 60 3 m − 60 ​ Substitusi n pada persamaan , diperoleh p ​ = = ​ m 2 + n 2 m 2 + 3 m − 60 2 ​ Nilai minimum tercapai saat p ′ 2 m + 2 ⋅ 3 m − 60 ⋅ 3 2 m + 6 3 m − 60 2 m + 18 m − 360 20 m − 360 20 m m ​ = = = = = = = ​ 0 0 0 0 0 360 18 ​ Sehingga, nilai minium dari yaitu p ​ = = = = = = ​ m 2 + 3 m − 60 1 8 2 + 3 18 − 60 2 324 + 54 − 60 2 324 + − 6 2 324 + 36 360 ​ Oleh karena itu, jawaban yang benar adalah yang benar untuk pertanyaan tersebut adalah C Ingat! Nilai minimum tercapai ketika turunan pertama bernilai Perhatikan perhitungan berikut ini! Substitusi pada persamaan , diperoleh Nilai minimum tercapai saat Sehingga, nilai minium dari yaitu Oleh karena itu, jawaban yang benar adalah C.
Mahasiswa/Alumni Universitas Negeri Yogyakarta08 Februari 2022 1542Halo Nadya, kakak bantu jawab ya Jawaban A Pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup Pembahasan Diketahui bahwa m dan n merupakan bilangan bulat positif. Pertanyaannya apakah m - n kelipatan 5? Pernyataan 1 m - n kelipatan 10, jika suatu bilangan kelipatan 10 maka bilangan tersebut juga kelipatan 2 dan kelipatan 5. Pernyataan 2 n kelipatan 5, untuk menjawab m - n juga kelipatan 5 sangatlah tergantung pada nilai m. Dengan demikian, jawaban yang benar adalah opsi A berupa pernyataan 1 SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan 2 SAJA tidak cukup. Semoga membantu ya
BerandaDua bilangan bulat m dan n memenuhi hubungan 2m-n=...PertanyaanDua bilangan bulat m dan n memenuhi hubungan 2m-n=40. Nilai minimum dan P=m 2 +n 2 adalah ....Dua bilangan bulat m dan n memenuhi hubungan 2m-n=40. Nilai minimum dan P=m2+n2 adalah .... 320295280260200AAA. AcfreelanceMaster TeacherMahasiswa/Alumni UIN Walisongo SemarangPembahasanUbah 2m-n=40 ke n=2m-40 subsitusi ke nilai minimum Minimum p' = 0 mencari nilai m Mencari nilai n Maka nilai minimumnnya Oleh karena itu jawabannya adalah AUbah 2m-n=40 ke n=2m-40 subsitusi ke nilai minimum Minimum p' = 0 mencari nilai m Mencari nilai n Maka nilai minimumnnya Oleh karena itu jawabannya adalah A Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!8rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!ZTZelga Trihafsari Nendea Makasih ❤️MaMuchammad alif zakariyyaPembahasan lengkap banget Makasih ❤️©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
PembahasanIngat, Penjumlahan pecahan bentuk aljabar Diketahui jika m dan n adalah bilangan bulat positif m 1 ​ + n 1 ​ = 12 5 ​ m 1 ​ + n 1 ​ mn n + m ​ 5 mn 5 mn 5 mn − 12 m m 5 n − 12 m ​ = = = = = = = ​ 12 5 ​ 12 5 ​ 12 n + m 12 n + 12 m 12 n 12 n 5 n − 12 12 n ​ ​ Selanjutnya, kita menentukan nilai dari m yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif n Misal n = 3 ⇒ m = 5 n − 12 12 n ​ = 5 3 − 12 12 3 ​ = 15 − 12 36 ​ = 3 36 ​ = 12 Misal n = 4 ⇒ m = 5 n − 12 12 n ​ = 5 4 − 12 12 4 ​ = 20 − 12 48 ​ = 8 48 ​ = 6 ►Menghitung nilai dari m 2 + n 2 yang terbesar Untuk m = 12 dan n = 3 ⇒ m 2 + n 2 = 1 2 2 + 3 2 = 144 + 9 = 153 Untuk m = 6 dan n = 4 ⇒ m 2 + n 2 = 6 2 + 4 2 = 36 + 16 = 52 Dengan demikian, nilaidari m 2 + n 2 yang terbesar adalah 153 Oleh karena itu, jawaban yang benar adalah B .Ingat, Penjumlahan pecahan bentuk aljabar Diketahui jika dan adalah bilangan bulat positif Selanjutnya, kita menentukan nilai dari yang merupakan bilangan bulat positif, dengan cara mencoba substitusi sembarang bilangan bulat positif Misal ⇒ Misal ⇒ ►Menghitung nilai dari yang terbesar Untuk ⇒ Untuk ⇒ Dengan demikian, nilai dari yang terbesar adalah Oleh karena itu, jawaban yang benar adalah B.
dua bilangan bulat m dan n